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Abstract. In recent years there has been growing interest in recogni-
tion models using local image features for applications ranging from long
range motion matching to object class recognition systems. Currently,
many state-of-the-art approaches have models involving very restrictive
priors in terms of the number of local features and their spatial relations.
The adoption of such priors in those models are necessary for simplifying
both the learning and inference tasks. Also, most of the state-of-the-art
learning approaches are semi-supervised batch processes, which consid-
erably reduce their suitability in dynamic environments, where unanno-
tated new images are continuously presented to the learning system. In
this work we propose: 1) a new model representation that has a less re-
strictive prior on the geometry and number of local features, where the
geometry of each local feature is influenced by its k closest neighbors
and models may contain hundreds of features; and 2) a novel unsuper-
vised on-line learning algorithm that is capable of estimating the model
parameters efficiently and accurately. We implement a visual class recog-
nition system using the new model and learning method proposed here,
and demonstrate that our system produces competitive classification and
localization results compared to state-of-the-art methods. Moreover, we
show that the learning algorithm is able to model not only classes with
consistent texture (e.g., faces), but also classes with shape only (e.g.,
leaves), classes with a common shape but with a great variability in
terms of internal texture (e.g., cups), and classes of flexible objects (e.g.,
snake).1

1 Introduction

The visual recognition problem is currently one of the most difficult challenges
for the computer vision community. Albeit studied for decades, we are still far
from a solution that is truly generalizable to many types of visual classes. New at-
tention has been devoted to this problem after the influential papers [2, 5], where
their main contribution was a combination of principled probabilistic recognition
models and (semi-)local image descriptors. The main goal is to represent a visual
class with a generative model comprising both the appearance and spatial distri-
butions of those descriptors. This problem has been aggressively tackled lately,
where the objective is to provide efficient models (in terms of learning and infer-
ence) with good recognition performance [13, 14, 12, 4, 10, 17, 20, 21]. Note that
learning is a method to estimate the model parameters, and inference is an ap-
proach to classify a test image as being generated by one of the learned models.

1 This work was performed while Gustavo Carneiro was at the University of British
Columbia.



In order to make the problem tractable, most of the current approaches make
the following assumptions: 1) mutual independence of the appearance of parts
given the model; 2) independence of appearance and geometry of parts given the
model; 3) restrictive priors in terms of the geometry and number of parts. It is
worth noting that we assume a model part to be represented by a local feature,
and the geometry of a part to comprise position, scale, and dominant orientation.
The third assumption above has two extremes. One extreme is that the geometry
of parts is independent given the model [10, 21] (see the bag of features model in
Fig. 1), which reduces the number of parameters to estimate during the learning
stage. However, this approach leads to a poor model representation that fails
to incorporate any information on the relative geometry of parts. The other
extreme is to model the joint distribution of the geometry of parts [13] (see
the constellation model in Fig. 1), which produces a rich representation. The
main challenge with the latter model is that the number of parameters grows
exponentially with the number of parts, and learning quickly becomes intractable
even with a relatively small number of parts (e.g., less than 10 parts). It is
unclear what types of visual classes can be effectively represented with such a
small number of parts.

The middle ground between these two extremes has been intensively studied
recently, where the goal is to assume restrictive priors in terms of the geometric
configuration of parts in order to improve the efficiency of inference (i.e., fewer
hypotheses from a test image to evaluate) and learning (i.e., fewer parameters
to estimate). For example, the assumption of a star-shaped [9, 14] or a hierarchi-
cal prior configuration of local features [12, 4] (see Fig. 1) reduces the number
of parameters to estimate, and inference takes advantage of the fact that all
these models possess a “special” node (e.g., root in the tree, or center node in
the star-shape model), which serves as a starting point for the formation of hy-
potheses, and consequently reduces the inference complexity. However, it is not
clear what the limitations of those models are in terms of which visual classes
can be represented using such restrictive priors in terms of the geometry of parts.
Also, even though those methods are capable of dealing with more parts, there
is still a limit of 20 to 30 parts, which clearly represents an issue if more complex
classes are to be represented. A notable exception is the hierarchical model [4]
that is able to deal with hundreds of parts, but it assumes an embedded hier-
archical model with a small number of nodes, which might impose limits in the
visual classes that can be represented with it. Finally, most of these models’ pa-
rameters are learned using a (semi-)supervised off-line learning approach. This
learning approach decreases the flexibility of those methods in dynamic environ-
ments where new unannotated training images are continuously presented to the
learning system.

In this paper we propose: 1) a new model for the visual classification prob-
lem that contains a less restrictive prior on the geometry and number of local
features, where the geometry of each model part depends on the geometry of
its k closest neighbors; and 2) an unsupervised on-line learning algorithm that
is capable of identifying commonalities among input images, forming clusters
of images with similar appearances, and also estimating the model parameters
efficiently and accurately. As commonly assumed in the state-of-the-art works,
we also assume that the appearance and the geometry of parts are indepen-
dent given the model, and that the appearance of parts is mutually independent
given model. The main novelty of our model is a prior based on a semi-full de-
pendency of the geometry of parts given model (see Fig. 1-(g)). Note from the
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Fig. 1. Graphical geometric models of priors. Note that Xi represents a model part.

graph representing our model that the geometry of each feature depends on the
geometry of its k neighboring features, where k is a parameter that defines the
degree of connectivity of each part. This prior enables an explicit control on the
connectivity of the parts, and it also allows for the object being modeled to have
(semi-)local rigid deformation within the area covered by the connected features,
and rigid/non-rigid global deformation. Our objective with this new model is to
extend the types of classes that can be represented with local image features since
the model can potentially have hundreds of parts, tightly connected locally, but
loosely connected globally.

We implement a new visual class recognition system using this new model
and learning method described above, and demonstrate that our system pro-
duces competitive classification and localization results compared to state-of-
the-art methods using standard databases. Moreover, we show that the learning
algorithm is able to model not only classes with reasonable texture (e.g., faces),
but also classes with shape only (e.g., leaves), classes with a common shape but
with a great variability in terms of internal texture (e.g., cups), and classes of
flexible objects (e.g., snakes).

2 Local Image Features

A local image feature represents a part in our model, and consists of an image
representation of local spatial support comprising an image region at a selected
scale. In this work we assume that a local feature has appearance and geometry.
The appearance is the image feature extracted from the local region, while the
geometry represents the image position from where it was extracted, the domi-
nant orientation in that image position, and the filter scale used to extract the
image feature. Therefore, a local feature vector f is described as f = [a,g], where
a is the appearance, and g = [x, θ, σ] is the geometry consisting respectively of
the position x, orientation θ, and scale σ.



2.1 Correspondence Set

A correspondence set represents a data association between two sets of local
features. Let us say we have a set F1 = {f1, ..., fM} and another set F2 =

{f̂1, ..., f̂N}. An association is a mapping of the M features from set F1 to the N
feature of set F2. In this work, a correspondence set is denoted as

E = {(f1, f̂c(1)), ..., (fM , f̂c(M))} = {e1, ..., eM},

where fi ∈ F1, f̂c(i) ∈ F2, and c(.) is a mapping function that associates a feature
from F1 to F2. When fi ∈ F1 is not paired with any feature from F2, then the
correspondence is denoted as (fi, ∅).

3 Probabilistic Model

Assume that there are C visual classes in the database of models, where each
class ωi is represented by a set Fi of M features, and also by appearance and
geometry parameters. Also, consider the presence of a class ω0 that models
general background images. A test image I produces the set FI of N features.
Then our goal is to first determine the likelihood of the presence of an instance
of class ωi in the test image, and then determine the location of each instance.
Hereafter, we refer to the former problem as classification, and the latter as
localization. In order to solve the data association problem, assume that HiI is
the set of all possible correspondence sets from the model features to the test
image features. Thus, each correspondence set EiI ∈ HiI has size M (i.e., the
number of model features).

The classification of model ωi given the features FI extracted from image I
involves the computation of the following ratio:

R =
P (ωi|FI)

P (ω0|FI)
=

P (FI |ωi)P (ωi)

P (FI |ω0)P (ω0)
. (1)

The prior ratio P (ωi)
P (ω0)

is assumed to be one, and the likelihood term can be

obtained by marginalizing out the variable EiI ∈ HiI that denotes the corre-
spondence set, as follows:

P (FI |ωi) =
∑

EiI∈HiI

P (FI , EiI |ωi) =
∑

EiI∈HiI

P (FI |EiI , ωi)P (EiI |ωi). (2)

Hence, there can be O(MN ) different correspondence sets between Fi and FI .
However, recall that we aim at a rich visual class representation with hundreds
of parts, and possibly thousands of features extracted from a test image, which
makes (2) intractable. Therefore, we have to rely on a heuristic that quickly

identifies a subset of H̃iI ⊂ HiI which contains correspondence sets that have
the potential to lead to a correct correspondence set. Finally, the likelihood ratio
in (1) is then approximated with

P (FI |ωi)

P (FI |ω0)
≈ max

EiI∈H̃iI

P (FI |EiI , ωi)P (EiI |ωi)

P (FI |EiI , ω0)P (EiI |ω0)
. (3)



First let us concentrate on the term P (EiI |ω) in the ratio (3) above. Given
the high number of model features, we assume that the prior of having a spe-
cific match in the correspondence set is mutually independent of other matches.
Therefore, we have

P (EiI |ω) =

M
∏

j=1

P (ej |ω). (4)

Basically, P (ej |ω) describes the likelihood of detecting model feature fj in a test
image assuming the presence of model ω.

The term P (FI |EiI , ω) is computed as follows:

P (FI |EiI , ω) =





M
∏

j=1

P (âc(j)|ej , ω)



 P ({ĝc(j)}j=1..M |EiI , ω), (5)

where P ({ĝc(j)}j=1..M |EiI , ω) = P (ĝc(M)|{ĝc(j)}j=1..(M−1), EiI , ω)...P (ĝc(1)|EiI , ω),
which is the decomposition of the likelihood of feature geometry using the chain
rule of probability. The first term P (âc(j)|ej , ω) represents the likelihood of hav-
ing the appearance matching between model feature fj and test image feature

f̂c(j). The second term P ({ĝc(j)}j=1..M |EiI , ω) denotes the likelihood of hav-
ing a specific joint geometry of model features that were paired to features in
the test image. It is important to mention that the decomposition can hap-
pen in all possible ways, which means that feature f1 does not represent a
“special” feature that needs to be found in the test image in order to find all
the other model features. As a result, another possible decomposition would be
P (ĝc(1)|{ĝc(j)}j=2..M , EiI , ω)...P (ĝc(M)|ω). Notice that even though we decom-
pose this joint distribution, its computation still has a high time complexity.
Moreover, this joint distribution would make the model sensitive to non-rigid
deformations. Therefore, in order to solve these two issues, we approximate
P (ĝc(M)|{ĝc(j)}j=1..(M−1), EiI , ω) to:

P (ĝc(M)|{ĝc(j)}j=arg(KiI(fM ,k,EiI)),KiI (fM , k, EiI), ω), (6)

where KiI (fM , k, EiI) ⊂ EiI returns the correspondences containing the k closest
model features to feature fM in the geometric space of the model. The parameter
k denotes how sparsely each model feature is connected to its neighbors and is
used to adjust the tradeoff between the richness of representation and the sensi-
tivity of the model to non-rigid deformations. Also the richer the representation
is (i.e., larger k), the higher the complexity of computing (6).

3.1 Probabilistic Correspondence Based on Semi-local Geometric
Coherence

Equation 6 introduces the likelihood of the geometry of the observed test image
feature ĝc(l) given the geometric information present in the respective k closest
model features to gl in the space of model geometry. Following up on the idea

described in [7], the geometric values of the test image feature f̂c(l) are predicted
using the following pairwise relations:

nT
c(l)c(o)(xc(l) − xc(o)) = ‖xl − xo‖ + rD(fl, fo),
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Fig. 2. Example of position prediction. Given the set of model features {fl}l∈{1,2,3,4},

suppose we want to estimate the position of test image feature f̂c(4). The probable
location of the feature (represented by an ellipsoid) is based on a Gaussian distribution
computed using the position of the correspondences in the test and model images and
the pairwise variances σ2

D(fl, fo) estimated in the learning stage.

(θc(l) − θc(o))2π = (θl − θo)2π + rO(fl, fo),
σc(l)−σc(o)

σc(o)
= σl−σo

σo
+ rS(fl, fo), (7)

where nc(l)c(o) =
xc(l)−xc(o)

‖xc(l)−xc(o)‖
, (.)2π ∈ [0, 2π), and ri(fl, fo) is a Gaussian noise

with zero mean and variance σ2
i (fl, fo) for i = D,O,S. The predicted geometry

for f̂c(l), namely [x̂∗
c(l), θ̂

∗
c(l), σ̂

∗
c(l)] (see Fig. 2), is computed by combining the

prediction produced by each one of the k model features assuming that: 1) the
variances σ2

i (fl, fo) are pairwise independent, and 2) the prediction produced by
each correspondence is weighted by 1) the distance between these two features
in the model space.

Therefore, the likelihood in Eq. 6 can be written as:

g([xc(M), θc(M), σc(M)]
T − [x∗

c(M), θ
∗
c(M), σ

∗
c(M)]

T ; Σt), (8)

where g(.) is the Gaussian function with zero mean, and Σt is the weighted
covariance computed with the k pairwise variances.

There are two important issues to mention in the computation above. The
first issue is the computation of the likelihood of the first match in the corre-
spondence set, which is calculated as P (g1|KiI (f1, k, EiI), ω) = 1

2π
1
A

1
(σMAX−σMIN) ,

where 2π represents the range of orientation, A is the area of the image in the
original image resolution, and (σMAX − σMIN) denotes the range of scales that
the image has been processed. The second issue is the computation of the ge-
ometry likelihood assuming the model ω0. Here we assume that, conditioned on
the model ω0, the likelihood of finding a feature with some specific geometry
is independent and uniformly distributed, as follows P ({gj}j=1..M |EiI , ω0) =
M 1

2π
1
A

1
(σMAX−σMIN) .

3.2 Probabilistic Correspondences Based on Feature Appearance

The probability of the appearance match between model feature fj and test fea-

ture f̂c(j) is denoted in (5) by P (âc(j)|ej , ω). According to [8], the distribution



of feature similarities between fj and f̂c(j) can be adequately approximated with
a beta distribution for the cases where this correspondence represents either a
correct or a false matching. The beta distribution, denoted as Pβ(x; a, b), is de-
fined in terms of two parameters a and b. The parameters aon and bon will be
learned for each feature fj belonging to the model ωi to explain the observed
distribution of feature similarity values given a correct correspondence, and the
parameters aoff and boff will be learned for the distribution of similarities given

a false correspondence. Hence, given the features fj and f̂c(j), and their simi-

larity denoted by s(fj , f̂c(j)) ∈ [0, 1), the likelihood of having correct and false
appearance correspondences are respectively computed with:

P (âc(j)|ej , ωi) = Pβ(s(fj , f̂c(j)); aon(fj), bon(fj)),

P (âc(j)|ej , ω0) = Pβ(s(fj , f̂c(j)); aoff(fj), boff (fj)). (9)

Finally, recall from Sec. 2.1 that a model feature can remain unmatched. In
this case, the term P (ej |ω) in (4), which denotes the probability of detecting
model feature fj , works as a penalizing factor. That is, when ej = (fj , ∅), then
P ((fj , ∅)|ω) equals one minus the probability of detecting fj [8].

4 Matching

The basic matching process consists of finding an initial correspondence set, and
iteratively searching for additional correspondences assuming that the previous
matches are correct. This process iterates as long as there are still model features
available to match test image features. This matching process is not restricted
to work with a single type of local feature. As exemplified in [14], this helps
in the representation of different types of visual classes. Here, our model uses
the following two different types of local image features: SIFT [18], and the
multi-scale phase feature [6].

Assuming that the parameters of the distributions above have been learned
(see Sec. 5), the matching process selects correspondence sets that produce a
ratio R > τR, where τR is an arbitrary constant (note that we can have more
than one correct correspondence set, which means that several classes can be
detected in the same test image and also multiple instances of the same class
can also be detected in one test image). As explained in Sec. 3, the exhaustive
search of correspondence sets is intractable, so we rely on certain heuristics for
the matching process. We start the matching process with a nearest neighbor

search, which builds the following correspondence set: EiI = {(fj , f̂c(j))|fj ∈

Fi, f̂c(j) ∈ FI , s(fj , f̂c(j)) > τs,¬∃fk ∈ Fi s.t. s(fk, f̂c(j)) > s(fj , f̂c(j))}, where
s(.) ∈ [0, 1) represents the similarity between two features, and τs is an arbitrary
threshold (here τs = 0.6 for the phase feature and τs = 0.55 for SIFT, where
the similarity measure for SIFT is normalized to be between 0 and 1). The
next step comprises a feature clustering step, which assumes that the model
suffered a specific type of spatial distortion and groups correspondences that
move coherently according to that distortion type. This clustering process can
assume rigid distortions (e.g., [18]) or non-rigid ones (e.g., [7, 16]). Similarly
to [15, 19, 10], our method does not rely heavily on this initial set of matches
produced by the grouping algorithm. In fact, these initial groups are useful as
initial guesses for the matching algorithm. Moreover, it does not matter whether



this initial grouping is robust to non-rigid deformations since the model, in the
process of expanding its correspondence set, is robust to non-rigid deformation
because it depends more on nearby features than on far away features for the
semi-local coherence presented in Sec. 3.1. Therefore, we adopt a simple Hough
clustering approach with a restrictive rigid model (i.e., the bins in the Hough
transform space are relatively small) that makes it extremely robust to outliers
in the group, but sensitive to non-rigid deformations (see [7]). Specifically, for
Hough clustering we used the following bin sizes: 5o for rotation, factor of 2
for scale, and 0.05 times the maximum model diameter for translation. This
restrictiveness results in a high number of groups, with each one having just a
few correspondences.

4.1 Expanding the Correspondence Set

Given the groups built by the nearest neighbor search and clustering scheme,
the expansion of each group is based on the following algorithm:

Algorithm 1 (Matching) Assuming that G groups have been formed by the
clustering process, where each group is denoted as Eg

iI , the process of expanding
this initial correspondence set is based on the following steps:

1. For each set g ∈ {1, ..., G}, do
(a) Select the closest model feature fj to any of the model features in Eg

iI ,

j = arg min
(fj∈Fi),(ej /∈Eg

iI
)
{‖xj − xl‖}el∈Eg

iI

(b) Select the the next correspondence to include in Eg
iI according to c(j) =

arg max
f̂c(j)∈FI

P (f̂c(j)|E
g
iI , ωi) (see Eq. 5). Note that this computation

does not have to be run over all test image features, since only a very
small percentage of test image features lie sufficiently close to the pre-
dicted position, orientation, and scale of model feature fj ;

(c) If P (âc(j)|ej , ωi)P (ĝc(j)|{g}j=1..,(j−1), E
g
iI , ωi)P (ej |ωi) > τP (here, τP is

dynamically determined based on the appearance parameters of the fea-
ture in 9 and the pairwise variances in (7), then include the correspon-

dence (f̂c(j), fj) in Eg
iI , else include (∅, fj) in Eg

iI ;
(d) Return to step 1 above until all model features are included in E g

iI .

An example of the matching between two images containing faces (of dif-
ferent people) is shown in Fig. 3. Note that the matching algorithm tends to
expand significantly the initial set g ∈ {1, ..., G} when it contains correct corre-
spondences.

Step 1(a) has complexity O(M) if performed with linear search, where M
is the number of model features. However, approximate nearest-neighbor search
algorithms [3] can find the nearest neighbor with high probability (which is
sufficient for our purposes) in O(log(M)) time. Both the number of groups to
try, G, and the number of test features to consider in step 1(b), K, are bounded
by constants. Therefore, the complexity of the Alg. 1 is O(M log(M)). Recall that
the models leading to the most efficient matching procedures in the literature
are the k-fans [9] and the star shape [14]. The former method has complexity
O(MHK), where H is the total number of places in the image, where H >> M ,
and K >= 1. The latter method has complexity O(NM), where N is the number
of parts detected in an image, so N > M . Hence, both methods would be
intractable for large values of M such as those used in our experiments.
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Fig. 3. Matching a pair of images using Algorithm 1. The first column shows the initial
group from the heuristic based on nearest neighbor and Hough clustering. The next
column illustrates the final group after the process of expanding this initial group. The
group in the first row is a correct match that can be considerably expanded, while the
second row shows a false initial match. The octagonal shaped features represent the
multi-scale phase feature [6], and the square shaped features represent SIFT [18]. The
white line connecting features from the left to the right image shows the correspon-
dence.

5 Learning

In this section we describe the process of learning the following model parame-
ters:

– For each model feature fj ∈ Fi it is necessary to learn
• the parameters of the feature conditional similarity distribution given ωi

(i.e., aon(fj) and bon(fj)) and ω0 (i.e., aoff (fj) and boff(fj)),
• the probability of feature detection given ωi and ω0: P (ej |ωi), and P (ej |ω0),

respectively.
– For each pair of model features fl and fo, it is necessary to learn

• the variance of the Gaussian noise affecting the distance, main orienta-
tion, and scale between fl and fo (see Eq. 7): σ2

D(fl, fo), σ2
O(fl, fo), and

σ2
S(fl, fo), respectively.

In the literature, the process of learning model parameters similar to the
above consists of, first, clustering features in the feature space (either manually
[12], or automatically [13]), and then, estimating the local feature and spatial
parameters based on maximum likelihood estimation. The main issue involved
in those learning methods is that the parameter estimation relies on gradient
descent algorithms that are fragile in the presence of a high number of parameters
since it can easily get stuck in local minima, which imposes very restrictive limits
in the number of parts present in a model. Also, the time and size of training
data required for this estimation grows quickly (e.g., exponential in [13]) in terms
of the number of parameters. Therefore, weakly connected models (e.g., the star-
shaped, or the hierarchical model) have been proposed in order to allow for faster
and more reliable learning methods with fewer degrees of freedom. Nevertheless,
if the number of parts exceeds say 20 parts, learning is usually intractable.



In this work, we propose the following unsupervised learning algorithm, where
the main idea is to build correspondence sets between pairs of images and to
cluster images that have strong correspondences.

Algorithm 2 (Learning) Consider a database of models Ω that is initially
empty, and for each new training image I that is presented to the system, we
have the following steps:

1. For each ωi ∈ Ω,
(a) Run the matching Algorithm 1 to find an instance of ωi in I, and select

the correspondence set that maximizes the following ratio:

E∗
iI = arg max

Eg

iI
∈H̃iI

P (FI |E
g
iI , ωi)P (Eg

iI |ωi)

P (FI |E
g
iI , ω0)P (Eg

iI |ω0)

(b) If the number of matched features in E∗
iI exceeds τE (i.e., correspondences

(fj , f̂c(j)) ∈ E∗
iI , such that f̂c(j) 6= ∅; here τE = 30) then update model

ωi using the correspondence set E∗
iI as the initial guess for matching the

image I to each image included in model ωi using the matching Algorithm
1.

2. If the image I failed to match any model ωi ∈ Ω, then form a new model
containing all image features and default values for the model parameters.

3. For every model ωi ∈ Ω, build a graph, where each node represents an image
present in ωi, and the edges between nodes have weights proportional to the
number of non-empty correspondences found between these two images, and
then run a connected component analysis so that the initial model can be
split into tightly connected groups of images.

4. Search for common images present in two distinct models, say ωi and ωj ∈ Ω.
If a common image is found between a pair of models, then check for common
features in this image that is present both models, and based on that, join the
two models into one single model.

The output of this learning algorithm is a database of models, where each
model consists of the images clustered together, the correspondence sets formed
between pairs of model images, the features found in those sets, and the appear-
ance and geometric parameters. In order to learn the parameters of the feature
conditional similarity distribution given ωi (i.e., aon(fj) and bon(fj)), we build the
histogram of feature similarities of each model feature and, assuming a beta dis-
tribution (Sec. 3.2), estimate its parameters [8]. The distribution given ω0 (i.e.,
aoff(fj) and boff(fj)) is then estimated computing the similarities between the
model feature and the closest 20 background features (in the feature space)[8].
Note that the background features are extracted from 100 random images (see
[8] for more details). The probability of feature detection given ωi is computed
with the detection rate of each model feature in ωi, and the detection given ω0 is
the probability of detecting a feature in any image (this is done by computing the
detection rate of any feature in the database of random images). The variance of
the Gaussian noise affecting the distance, main orientation, and scale between
pairs of model feature is computed using the correspondence sets in the model
ωi. Finally, it is important to mention that the user has to specify the upper
bound of the total number of features to be included in the model. Defining this
upper bound on the number of model features is important in order to limit the



Face Leaf

Mug Can Snake

Fig. 4. Illustration of the correspondence sets between two pairs of images for each
model. Note that each correspondence set between two images of the same model is
shown in a single cell, where the arrangement of the features in the top image must
find a similar structure in the bottom image.

computational complexity of the matching as defined in Sec. 4.1. Note that the
model can have any number of features as long as this number is smaller than
this user defined upper-bound. Whenever the learner has to eliminate features, it
resorts to the classification based on the appearance statistics of the feature [8].

Our learning algorithm is used to build the models of the following databases:
a) faces [13] (526 images), b) leaves [1] (186 images), c) mugs (74 images), and
d) snake of cans [7] (40 images). For each database, we randomly selected half
of the images for training, and the remaining images are used for testing. Fig. 4
shows two examples of matchings between pair of images present in each model.

6 Experimental Results

In this section we show the performance or our recognition system for the clas-
sification and localization problems.

6.1 Classification

Following [11], for each of the four object classes we use our recognition system
to predict the presence/absence of at least one object of that class in a test
image. The output of the classifier is the ratio (1) that represents the confidence
of the object’s presence so that a receiver operating curve (ROC) curve can be
drawn. Note that we use the database of background images from [1] to draw
the ROC curve.



In our first experiment, we show the ROC curves for each of the models in the
database, and some examples of matchings (see Fig. 5). The database of faces
is used in order to compare with the state-of-the-art methods in the literature.
In this database, under similar experimental conditions, we get an equal error
rate (EER) of 98.2% (recall that EER is the point at which the true positive
rate equals one minus the false positive rate). The Face model in this experiment
contains 3000 features and connectivity k = 20. This represents a competitive
result compared to the EER=96.4% in [13] and of 98.2% in [9]. The EER is a
function of the following two things (see Fig. 6): a) number of features present
in the model, and b) connectivity k. The number of features in the model can be
reduced by selecting a subset of the model features that are robust and detectable
under model deformations, and distinctive (for details see [8]). Usually, the EER
improves with the number of model features until it reaches a point of saturation,
where more features do not improve the performance, but worsen the efficiency
of the system. Moreover, higher k also improves the richness of the representation
(i.e., better EER), but reduces the system’s efficiency. Finally, EER was 92.1%
for the Leaf database, and 100% for the Mug and Can Snake databases.

6.2 Localization

We also use the experimental conditions described in [11] to illustrate the local-
ization results. For each class, the task of our classifier is to predict the bounding
box of each object in a test image. Each bounding box produced by our system
is associated with a detection ratio (1) so that a precision/recall curve can be
drawn. To be considered a correct localization, the area of overlap between the
predicted bounding box Bp and ground truth bounding box Bgt must exceed

P% by the formula:
area(Bb∩Bgt)
area(Bp∪Bgt)

. We show the precision recall curves for each of

the four classes in Fig. 7 for P = 50% and P = 25%. The main conclusion from
these graphs is that our system is able to correctly localize the object in the
image, but the bounding box formed by position of the local features present in
the correspondence set tends to occupy a relatively small portion of the ground
truth.

7 Conclusions

We have shown that it is possible to efficiently derive object class models con-
taining hundreds of features by allowing each feature to depend on only its k
closest neighbors. This has the additional advantage that it can represent flexi-
ble objects in a natural way because their local geometry is often more tightly
constrained than their global geometry. Our novel on-line learning algorithm is
able to cluster images with similar appearance, identify consistent subsets of
features, and efficiently estimate their model parameters. Experimental results
show that this approach can be applied across a variety of object classes, even
if they are defined by only a small subset of shared features.
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Fig. 5. Two examples of correspondence sets found in test images and the ROC curve
for each model.
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Fig. 6. EER versus number of training features and k for the Face database.
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